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spectra of (Z)-propanethial S-oxide (6) suggest that the 
preference for the skew conformation is not a very strong one. 
Unlike the parent sulfine,2a sulfines 6 and 9 are stable in the 
waveguide at 50 mTorr and 25 0C. It has not yet proven pos­
sible to observe directly by microwave spectroscopy (or other 
spectral means) 1-alkenesulfenic acids either in the pyrolysis 
of 7 or 8 or in the vapors or extract from homogenized on­
ions. 

Careful FT NMR analysis of the isolated onion LF as well 
as the sulfines from pyrolysis of alkenyl sulfoxides 7 and 8 re­
veals the presence in each case of a minor (<10%) component 
characterized as the (ii)-sulfine (e.g., 4 from the onion and 
from 7). Details of this work will be presented elsewhere. 
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Photochemical Reaction of Dicyanoanthracene with 
Acetonitrile in the Presence of an Aliphatic Amine. 
A Novel Photochemical Amination 

Sir: 

Photochemical reactions involving electron transfer followed 
by proton transfer are well examined on arene-amine systems.1 

For instance, irradiation of a solution of anthracene and a 
secondary amine in acetonitrile yielded both the 1:1 adducts 
and the reduction products of anthracene.2 We now report that 
irradiation of 9,10-dicyanoanthracene (1), a more powerful 
electron acceptor than anthracene itself, in acetonitrile in the 
presence of a primary, secondary, or tertiary amine did not 
yield the 1:1 adduct of the amine and 1 but reaction products 
between 1 and acetonitrile. 

Irradiation of a mixture of 1 (70 mg) and butylamine (20 
mL) in acetonitrile (300 mL)3 with a Pyrex-filtered me­
dium-pressure mercury arc (100 W) for 4 h under nitrogen 
gave 9-amino-10-cyanoanthracene (2), mp 259-260 0C (lit.4 

mp 262-263 0C), m/e 218 (M+), in 64% yield. Acetaldehyde 
and butyraldehyde were also identified in the reaction mixture 
as the corresponding 2,4-dinitrophenylhydrazones. A similar 
result was obtained when 1 in the acetonitrile3 was irradiated 
in the presence of diethylamine or triethylamine producing 2 
in 42 or 34% yield together with acetaldehyde, respectively. 

To clarify the origin of the nitrogen in the amino group of 
2, we carried out similar photochemical reactions of 1 in 90% 
aqueous acetonitrile-15N (96.9 atom %) in the presence of 
triethylamine. The mass spectra clearly showed that the major 
product (>95%) was 15N-incorporated 2. This result explicitly 
indicates that the nitrogen in the amino group of 2 originates 
from the acetonitrile. In accord with this result, when methanol 
or benzene was substituted for acetonitrile, 9-cyanoanthracene 
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Scheme I 

CN CN' 

1 i 
(4) was obtained instead of 2 in a reasonable yield5 through 
the photoinduced Birch reduction.6 

To reveal the reaction sequence, we studied differences re­
sulting from mechanistic modifications. The reaction did not 
occur in the absence of light or the amine. The fluorescence of 
1 was quenched by the amines and the Stern-Volmer plots 
were linear but no exciplex emission was observed. The 
Stern-Volmer constants are shown in Table I. The rates of 
quenching calculated from the known lifetime of singlet I7 are 
approximately diffusion controlled but somewhat dependent 
on the ionization potential of the amine used. It is concluded 
from this result that the initial step of the reaction is electron 
transfer from amine to 1 via an encounter complex or exci­
plex.8 

Participation of water in the reaction was also demonstrated; 
when the acetonitrile was rigorously dried on phosphorus 
pentoxide,9 its photochemical reaction with 1 in the presence 
of triethylamine did not give 2.10 On the other hand, irradiation 
of 1 with triethylamine in 90% aqueous acetonitrile for 9 h gave 
2 in a high yield (95%), indicating that water is essential for 
the formation of 2. When the reaction was interrupted after 
3 h, an unstable intermediate 3a, m/e 244 (M+), was obtained 
in addition to 2, but it was converted into 2 by chromatography 
on silica gel. Since 3a was readily hydrolyzed to 2 and, more­
over, acetaldehyde was detected in the reaction mixture, the 
structure of 3a is deduced as a Schiff base. When trideu-
terioacetonitrile was used in place of acetonitrile, the mass 
spectra of the reaction product 3b exhibited the molecular ion 
at m/e 247, three mass units higher than that of 3a. When 1 
drop of D2O was added to the starting mixture of 1, triethyl­
amine, and dry acetonitrile, the photochemical reaction gave 
3c of which mass spectra showed its molecular ion at m/e 245, 
one mass unit higher than that of 3a, indicating participation 
of a proton-transfer step in the reaction. When acetonitrile-15TV 
was used in place of ordinary acetonitrile as mentioned before, 
the mass spectra of the intermediate 3d exhibited the molecular 
ion at m/e 245, again one mass unit higher than that of 3a. The 
mass spectra of 3a-d also exhibited strong fragment ions at m/e 

Table I. Quenching of the Fluorescence of 1 by Amines0 

V , M-1 

fcq, M-1 s-1 

Et3N 

270 
1.8 X 1010 

Et2NH 

220 
1.4 X 1010 

BuNH2 

120 
7.9 X 109 

" A solution of 1 (1.8 X 1O-4 M) in dry acetonitrile was used. The 
amine concentration range and the correlation coefficients are as 
follows: 1.4 X 10-3-7.1 X 10"3 M (0.997), 3.8 X 10-3-l.l X 10"2 

M (0.985), and 6.4 X 10-3-3.2 X 10~2 M (0.999) for the primary, 
secondary, and tertiary amines, respectively. 

229 (M - CH3), 229 (M - CD3), 230 (M - CH3), and 230 
(M - CH3), respectively, which correspond to characteristic 
fragment ions of anils,11 supporting the proposed structures 
of these intermediates. 

When isobutyronitrile was used instead of acetonitrile, a 
similar reaction took place. As an example, irradiation of a 
mixture of 1 (74 mg), triethylamine (20 mL), isobutyronitrile 
(250 mL), and water (10 mL) with a Pyrex-filtered medium-
pressure mercury arc (100 W) for 5 h under nitrogen gave 2 
in 57% yield through an intermediate 5, m/e 272 (M+), to­
gether with a small amount (26%) of an alkylated compound, 
9-cyano-10-isopropylanthracene (6).12 

Although the anthracene cation radical has been known to 
react with acetonitrile,13 the present reaction must be the first 
example where the anion radical of an anthracene derivative 
reacts with aliphatic nitriles. We propose tentatively the 
mechanism shown in Scheme I for this unique reaction.14 
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